Integration of UIMA Text Mining Components into an Event-based
Asynchronous Microservice Architecture

Sven Hodapp, Sumit Madan, Juliane Fluck, and Marc Zimmermann
Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany
{sven.hodapp, sumit.madan, juliane.fluck, marc.zimmermann} @scai.fraunhofer.de

Abstract

Distributed compute resources are necessary for compute-intensive information extraction tasks processing large collections of
heterogeneous documents (e.g. patents). For optimal usage of such resources, the breaking down of complex workflows and document
sets into independent smaller units is required. The UIMA framework facilitates implementation of modular workflows, which
represents an ideal structure for parallel processing. Although UIMA AS already includes parallel processing functionality, we tested
two other approaches for distributed computing. First, we integrated UIMA workflows into the grid middleware UNICORE, which
allows high performance distributed computing using control structures like loops or branching. While good distribution management
and performance is a key requirement, portability, flexibility, interoperability, and easy usage are also desired features. Therefore, as
an alternative, we deployed UIMA applications in a microservice architecture that supports all these aspects. We show that UIMA
applications are well-suited to run in a microservice architecture while using an event-based asynchronous communication method.
These applications communicate through a standardized STOMP message protocol via a message broker. Within this architecture, new
applications can easily be integrated, portability is simple, and interoperability also with non-UIMA components is given. Markedly, a
first test shows an increase of processing performance in comparison to the UNICORE-based HPC solution.

Keywords: UIMA, Microservice, Text Mining, Distributed Computing, Interoperability

1. Introduction tion from large chemical patent collections, huge compute

The Apache UIMA (Unstructured Information Manage- resources were necessary (Bergmann et al., 2012). The

ment Architecture)! (Ferrucci and Lally, 2004) framework integrated te).(t and image mining pipelines are b?lsed on
is one of the most used environments for the assembly of ~ UIMA and uimaFIT. In UNICORE, these applications are

information extraction software. It defines standardized in- ~ WF apped' and deployed as UNI CQRE 'Gr idBeans to enable
terfaces and allows multithreading. Multiple text mining ~ the distributed computing functionality. ‘In addition, the
modules are already integrated within UIMA. One exam- Gridbeans contain the specification for input and putput,
ple of a publicly available resource of UIMA components ~ heeded compute resources as well as for configuration pa-
is DKPro Core (Eckart de Castilho and Gurevych, 2014). It ~ rameters of the application.

provides a large collection of text mining modules wrapped UNICORE offers a client and a server platform for grid
within the Apache UIMA components using the uimaFIT computing and provides sophisticated workflow features as

library (Ogren and Bethard, 2009). well as built-in application support. Deployed on a cluster
In addition to the availability of suitable text mining mod- System, it makes distributed computir}g possib.le in a seam-
ules, distributed compute resources are necessary to ex- less and secure way. Through a graphical user interface, the

tract information within large document collections suchas ~ client software UNICORE Rich Client facilitates the setup

full text papers or patents. UIMA Asynchronous Scaleout of configurable workflows using control structures such as
(UIMA AS)?2, which is part of the Apache UIMA project, loop, if, while to combine different UIMA applications with

allows distributed computing and can scale out UIMA ap- other tools. Despite the high compute performance of UNI-
plications using asynchronous messaging. It handles the CORE, new installations and configuration of GridBeans
messaging and the queue management necessary for inter- for users unaware of UNICORE is not seamless. In our ex-
service communication using the open Java Message Ser- perience maintenance and configuration of UNICORE is a

vice (JMS) industry standard. On top of UIMA AS, Dis- complex task, and we assume a bottleneck in the massive
tributed UIMA Cluster Computing (DUCC), extends its usage of file I/O during stage in and stage out and in the
functionality towards distributed computing. It facilitates service orchestrator for huge numbers of small jobs.

the scale out of UIMA and even non-UIMA applications ~ As a consequence, we searched for an alternative method.
and enables high throughput processing of large data col- ~ We tested the integration of UIMA into a distributed micro-
lections. In addition, DUCC manages the life cycle of ser- service architecture. In comparison to UIMA AS and
vices deployed across a cluster. DUCC, our microservices allow the design of event based
In contrast to the afore mentioned work, we used the grid ~ systems that enable dynamic realizations of fine-grained
middleware UNICORE (Uniform Interfaces to Computing ~ text mining pipelines - we don’t make use of predefined
Resources) (Streit et al., 2010) to deploy and execute UIMA response queues or intelligent AS clients. In our case the

applications. For the compute intensive information extrac- ~ message itself can contain the information where it should
be routed next.

"https://uima.apache.org Many organizations such as Amazon, Google, Netflix have

*http://uima.apache.org/doc-uimaas-what.html already evolved their platforms to microservice architecture

19

(Newman, 2015). They represent a new type of technology
to tackle the challenge of rising complexity of an enterprise
software system. The microservice architecture allows to
break down a monolithic system into multiple components
wrapped as small services. Decomposing a system in small
services has various advantages, for instance faster deliv-
ery, embracing newer technologies, better scaling or easy
deployment.

To improve interoperability, to ease deployment, and to ac-
celerate large-scale processing, we integrated the UIMA
components into a microservice architecture based on open
source messaging broker Apache ActiveMQ Apollo®. In
addition to the implementation details, we present a per-
formance and scalability comparison with UNICORE grid
computing and the microservice approach by applying a
text mining workflow on a larger dataset. Furthermore, we
analyze and discuss the findings and provide an outlook for
future activities.

2. Material and Methods

First, we shortly describe the architecture of the UIMA
Pipelets. They have been developed within the UIMA-HPC
project* for the integration into UNICORE. The pipelet ar-
chitecture allows the creation of modular information ex-
traction workflows. For the integration into the microser-
vice architecture, they were extended with several generic
communication mechanisms. In the subsequent sections,
further integration details of the microservice architecture
are described.

2.1. UIMA Pipelet

The Pipelet Core Framework has been developed to inte-
grate all kinds of applications into the UIMA ecosystem.
We always bundle a reader (collection reader) and a writer
(CAS consumer) with one or multiple annotators (analysis
engines (AE)). A pipelet is basically a specialized aggre-
gated analysis engine (AAE) helping the developer to easily
build, configure, and deploy wrapped tools.

Figure 1 depicts the basic structure of a pipelet. In the fol-
lowing, the principal communication flow is sketched: first,
the reader transforms the input data into a well defined CAS
data structure. The main component of a pipelet—the anal-
ysis engine—takes the CAS information as an input, per-
forms its annotation and/or extraction task, and enriches
the CAS with the extracted structured information. The
writer is able to transform the enriched CAS into the desired
output format. Several readers and writers for plain text,
PDF, CSV, SQL, DOCX, image formats, or SCAIView’ are
available. All pipelets use the serializable UIMA CAS data
structure as the uniform exchange format. Also, a com-
mon type system specifies the needed data types, which is
shared by all pipelets to handle the CAS data structure and
providing provenance information. Further details of our
UIMA pipelet architecture are described in Bergmann et al.
(2012).

*http://activemq.apache.org/
*http://www.uima-hpc.de/en/about-uima-hpc.html
>http://scaiview.com

20

The Pipelet Core Framework includes the base libraries
(e.g. UIMA, uimaFIT), utilities (e.g. provenance, param-
eter validation), and several generic communication mech-
anisms, which can be used by the pipelets as readers and
writers. There are three different types of communication
mechanisms available:

1. The type File I/0 can read and write files directly from
a file system,

2. Pipe I/0 allows pipelets to read and write data streams
from a UNIX pipe, and

3. Message I/0 is used by the pipelets to exchange data
as messages in the microservice architecture.

For the microservices, the last communication mechanism
was newly included. Its implementation is detailed in the
next section.

SCAI Typesystem

Annotator Writer
N e [N co |
CAS > [cas > o

utput

Pipelet Core Framework

File I/0 Pipe I/0 |Message I/O|...

Figure 1: The basic structure of an UIMA pipelet is an ag-
gregated analysis engine (AAE). Our microservice archi-
tecture can be addressed via Message 1/O.

2.2. Pipelet as a Microservice

The implementation of the communication mechanism
Message /0O in the Pipelet Core Framework allows us to
deploy and execute each of our pipelets directly as a micro-
service. The implementation also provides capabilities to
connect to a broker, maintain the connection, publish and
subscribe to queues, and handles the messages.

2.2.1. Communication Method

The communication method describes how services com-
municate with each other. There are two major commu-
nication methods available: request/response, with which a
client initiates a request and waits for a response; and event-
based, which triggers the activation of services on incom-
ing events. The request/response method is mostly used
and implemented for synchronous tasks such as for web
services or remote procedure calls. In contrast, the event-
based method is preferred for asynchronous tasks, which
doesn’t require a response directly. Classically event-based
systems are highly decoupled. Most of the UIMA com-
ponents are independent by nature and are well suited for

the integration into a highly decoupled system. There-
fore, we prefer the asynchronous event-based communica-
tion method.

2.2.2. Message Protocol

To enable a microservice architecture, it is important to
have a common messaging protocol that is used to ex-
change data between microservices. Apache ActiveMQ
Apollo supports various messaging protocols. From those,
the Simple Text Orientated Messaging Protocol (STOMP)®,
is a lightweight and easy to implement protocol. It’s de-
sign is similar to the popular and widespread Hyper Text
Transfer Protocol (HTTP). Additionally, STOMP can be
bridged to the Java Message Service (JMS) industry stan-
dard, which allows STOMP-based microservices to com-
municate directly with JMS-based applications.

Header

content-type | gzip-xml

tracking-nr | Neoplasms-KW48

timestamp 1458661156661

event ner.genes,store

agent JProMiner (7.0) 28510@node-042

unit 13 [concepts]

license MDAyOGxvY2F0aW9ulHNjYWI12a...
Body
H4sIAAAAAAAAALzdXa+kx3Wm6fPSFQWeNSnr...

Table 1: The general structure of a STOMP message. A set
of key-value pairs builds the message header and the body
contains the serialized CAS.

The STOMP-based messages are basically structured in
two parts: A set of key-values as header entries and the
message body (cf. Table 1). In case of our UIMA pipelets,
the message body is simply an (compressed) XCAS. Every
message requires the header property destination and may
include content-length, content-type as additional proper-
ties. Those are part of the STOMP specification. For our
text mining workflows, we introduce the following addi-
tional header properties:

* tracking-nr: For identification of related messages.
For instance, all messages of the same document col-
lection get the same tracking-nr.

timestamp: This field contains the UNIX timestamp of
the incoming message.

event: It defines a vector of tasks. So in a workflow
scenario each service knows where to route the mes-
sage next, e.g. ner.genes, ner.chemicals, storage.

* agent: Contains information of the message sender,
such as the program name and the machine (prove-
nance).

* unit: In this property, every service can log informa-
tion needed for accounting and service-level agree-
ments (SLAs). Possible currencies might be the doc-

Shttps://stomp.github.io

21

ument length, the used CPU time, the license costs of
the analysis engine, or the number of annotations.

¢ license: License information for process authorization
is included in this property. For this, macaroons de-
fined by Birgisson et al. (2014) are used. A macaroon
is similar to a browser cookie, but in difference, it pro-
vides cryptographic signed caveats. This caveats can
be checked decentralized by every involved microser-
vice.

2.2.3. Message Broker

The communication is handled by the fast and reliable
multi-protocol Apache ActiveMQ Apollo’ messaging bro-
ker. It supports reliable messaging by persisting the mes-
sages in case of system failure. The persisted messages
can be recovered and processed later. The broker repre-
sents the central well-known contact for all microservices.
All microservice communication flows through the mes-
sage broker.

For the delivery of a message, Apollo provides several
types of destinations such as queues and topics. A queue
represents a persistent message channel, which holds mes-
sages until a subscribed service picks them up. In such a
way, queues have a load balancing property. In contrast,
topics are non-persistent channels that drop messages in
case of non-existing subscriptions. Also, they send every
message to all subscribed services. As consequence, top-
ics have a broadcasting property. Services can publish and
subscribe to queues or to topics.

ST SN T G

Document-
Store

1j0ug abessaln

Figure 2: Illustration of a message flow of different micro-
services communicating with each other over a reliable
message broker. Only the BELIEF components are UIMA
pipelets.

2.2.4. Management

To manage the microservices, we introduced a management
topic channel where all our services subscribe to. In addi-
tion, a library is integrated within the pipelets that includes
management capabilities for the microservices. Based on

"https://activemq.apache.org/apollo/

this library, it is possible to get the configuration settings,
accounting logs, and statistic information. Furthermore,
it is also possible to let the service unsubscribe and shut-
down itself for maintenance. A graphical user interface has
been developed which allows to configure, start, and mon-
itor complex workflows (cf. Figure 3). All microservices
have been registered to Monit®, a flexible Unix toolbox for
managing and monitoring Unix services. If a service fails to
answer within 60 seconds it will be automatically restarted.

2.3. Workflow description

The event-driven asynchronous communication allows the
definition and creation of flexible workflows. The workflow
definition can be attached to each individual message as an
event vector. The events specify which kind of services
should be visited, therefore a per-message workflow can be
defined.

A very complex retrieval and analysis task is to identify
causal biomedical relationships within a set of articles. For
instance, a researcher wants to know which drugs have
an effect on different targets leading to a biological pro-
cess in a certain disease context. For such a task, the
user queries SCAIView to retrieve all relevant articles in
the disease context. The result is a list of PubMed article
identifers (PMID). The articles are retrieved via the PMIDs
from a document store. Each article is sent to the BELIEF
(Biological Expression Language Information Extraction
WorkFlow) (Fluck et al., 2014) workflow, which itself is a
collection of UIMA components communicating via mes-
sages. All extracted relationships are written back as BEL
(Biological Expression Language)® documents into a BEL
store. From the BEL store a cause-relationship network is
generated and transferred into the Neo4j'® graph database
where all relevant paths are computed and presented to the
user for inspection. The message communication flow is
illustrated in Figure 2. The SCAIView client initiates a
workflow task by sending a query and workflow plan to the
document store over the message broker. All the services
are listening to a queue for input and are sending the results
to the next queue defined in the workflow plan, which is
part of the message.

3. Results and Discussion

Both systems, the UNICORE as well as the microservice
embedded UIMA workflow have been deployed to compare
the performance and scalability. For the performance tests,
10 compute nodes with 16 cores each, 32 GB of RAM,
and 56 GBit/s networking” were used. For each solution,
one additional node was employed to host the UNICORE
gateway and the ApolloMQ Apollo message broker respec-
tively. All microservices have been queued on the compute
cluster using the TORQUE Resource Manager!?.

We used a simple workflow that recognizes gene and pro-
tein names in text for our performance tests.

8https://mmonit.com/monit/#home
“http://www.openbel.org/
Phttp://meodj.com

''Mellanox Infiniband FDR (56 GBit)

12 http://www.adaptivecomputing.com/products/open-source/torque/

22

Message Control GUI BEE

[Run | Info | Billing || CC |

Processed Elements
10000 20,000 30,000 40,000 50,000

Processed Documents
0 5000 10,000 15000 20,000 25,000 0

—

[=1XCAS] = (Chemical concepts] = [Annotations]

Logging Selected broker
Wlinfo

dracol -
[billing

Figure 3: The graphical user frontend which allows to
monitor microservices, configure, and launch workflows.

1. A SQL database is queried to retrieve a sample of one
million PubMed abstracts. The SQL service creates a
CAS for each document. In the message scenario, it
generates a STOMP message and sends it to the gene
annotator queue. In the UNICORE scenario, it creates
an XMI file for each document and transfers it to the
gene annotator grid bean.

ProMiner (Hanisch et al., 2004), the gene and protein
UIMA annotator microservice, which is subscribed to
this queue, gets the message, annotates gene informa-
tion into the CAS, and sends the result to the destina-
tion queue. ProMiner grid bean gets the XMI files, an-
notates gene information into the CAS, and transfers
the resulting XMI to the UNICORE storage.

Table 2 shows the results of the experiment. Even though
both approaches used an equal number of processing nodes,
microservices needed less overall processing time com-
pared to the UNICORE-based approach.

Approach Abstracts | Time | Performance
[count] [s] labstracts/s/node]

Microservices | 10k 11 90.9

Microservices | 100k 77 129.9

Microservices | 1M 867 115.3

UNICORE 10k 102 9.8

UNICORE 100k 210 47.6

UNICORE 1M 1790 | 55.9

Table 2: Performance and scalability comparison of UNI-
CORE and microservice approach using 10 cluster nodes.

Equally important is the ability to set up flexible work-
flows. With microservices, asynchronous, real-time or per-
message text mining workflows can be build easily. Incom-
ing new messages are queued and load balanced between
all listening services. A uniform distribution of the mes-
sage balancing could be observed during our tests. This is
important since in general the documents to be processed
are of different length, e.g. patents range from 1 to 500

pages. The documents are of different complexity, e.g. the
number of chemicals extracted can vary from none to ten
thousands for a single patent. And the documents are of
different content, i.e. not all documents contain depictions
or tables and some of them have passages in different lan-
guages. Therefore it is really hard to package and schedule
jobs of same size for a set of diverse documents. More-
over, it is possible to absorb load peaks simply by starting
the relevant microservices (temporarily) on our compute
cluster. Another advantage of the microservice architec-
ture is the inter-exchange between UIMA and non-UIMA
services. Non-UIMA services can communicate over the
same broker without interfering with the UIMA services in
any way.

Other systems, such as the UNICORE solution as well as
the UIMA AS solution, execute static pipeline plans. For
every change in a pipeline plan, new aggregated workflows
have to be assembled and deployed. In contrast, registered
microservices are always available and allow to create flex-
ible and even per-message grained workflows. In addition,
fast response times can be expected. The scalability for
batch processing can easily be reached through parallel de-
ployment of the same services on multiple cluster nodes.
Currently, those additional servers are started manually but
in future, we plan to start and shut down these services au-
tomatically. Such automatic adaptation capabilities are also
necessary to adjust systems with different analysis engines.
Depending on the task, they can have very different perfor-
mance characteristics.

The costs of integrating UIMA within the microservice ar-
chitecture are rather low. No changes in the fundamental
UIMA structure are necessary and we could use the com-
munication abstractions of the Pipelet Core Framework.
Therefore, it was easily possible to derive a first working
version of the system. Moreover, now, those pipelines can
be used in the UIMA framework alone, within the UNI-
CORE and in the microservice environment without further
changes.

On the management level, the inclusion of multiple ser-
vices and distributed computing makes monitoring on dif-
ferent levels critical for the sustainability and success of
the system. On the deployment side, automatic deployment
and testing of new versions are necessary. For the mon-
itoring of the services, all our services are subscribed to
a management channel. In an asynchronous environment,
services are built to make autonomous decisions (choreog-
raphy pattern). Automatic throughput adjustments through
starting and shutting down of additional services as men-
tioned above is a first future step in this direction. More-
over, we would like to develop self-organized workflows to
make the per-message workflows more autonomous. For
example, if more than two gene annotations are found in
a text, the annotator might decide to pass the message to
a relation extraction service. Such self-organization would
save compute time considerably and would make configu-
ration of workflows easier.

Mircoservices are well-suited to employ UIMA workflows
in a distributed environment. The integration costs are low
and the resulting services demonstrate a high degree of flex-
ibility, interoperability, and scalability.

23

4. Acknowledgments

This work was supported by grants from the German Fed-
eral Ministry for Education and Research (BMBF) within
the BioPharma initiative “Neuroallianz”, project 12 B *Cen-
tral IT Platform and RDF ProMiner Enhancement’ (grant
number: 16GW0016), and by UCB Pharma GmbH (Mon-
heim, Germany).

5. Bibliographical References

Bergmann, S., Romberg, M., Klenner, A., and Zimmer-
mann, M. (2012). Information extraction from chemical
patents. Computer Science, 13(2):21.

Birgisson, A., Politz, J. G., Taly, A., Vrable, M., and
Lentczner, M. (2014). Macaroons : Cookies with con-
textual caveats for decentralized authorization in the
cloud. Ndss, (February):23-26.

Eckart de Castilho, R. and Gurevych, 1. (2014). A
broad-coverage collection of portable nlp components
for building shareable analysis pipelines. Proceedings
of the Workshop on Open Infrastructures and Analysis
Frameworks for HLT, 2(1):1-11.

Ferrucci, D. and Lally, A. (2004). Uima: an architectural
approach to unstructured information processing in the
corporate research environment. Natural Language En-
gineering, 10(3-4):327-348.

Fluck, J., Madan, S., Ansari, S., Szostak, J., Hoeng, J.,
Zimmermann, M., Hofmann-Apitius, M., and Peitsch,
M. C. (2014). Belief - a semiautomatic workflow for
bel network creation. Proceedings of the 6th Interna-
tional Symposium on Semantic Mining in Biomedicine
(SMBM), pages 109-113.

Hanisch, D., Fundel, K., Mevissen, H.-t., Zimmer, R., and
Fluck, J. (2004). Prominer : Organism-specific protein
name detection using approximate string matching the
prominer system. BioCreative: Critical Assessment for
Information Extraction in Biology, pages 1-5.

Newman, S. (2015). Building Microservices: Designing
Fine-Grained Systems. O’Reilly Media, first edition.

Ogren, P. V. and Bethard, S. J. (2009). Building test suites
for uima components. Proceedings of the Workshop on
Software Engineering, Testing, and Quality Assurance
for Natural Language Processing (SETQA-NLP 2009),
Proceeding(June):1-4.

Streit, A., Bala, P, Beck-Ratzka, A., Benedyczak, K.,
Bergmann, S., Breu, R., Daivandy, J. M., Demuth, B.,
Eifer, A., Giesler, A., Hagemeier, B., Holl, S., Huber,
V., Lamla, N., Mallmann, D., Memon, A. S., Memon,
M. S., Rambadt, M., Riedel, M., Romberg, M., Schuller,
B., Schlauch, T., Schreiber, A., Soddemann, T., and
Ziegler, W. (2010). Unicore 6 — recent and future ad-
vancements. annals of telecommunications - annales des
télécommunications, 65(11-12):757-762, 12.

