
Interoperability = f (community,division of labour)

Richard Eckart de Castilho
Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science
Technische Universität Darmstadt
http://www.ukp.tu-darmstadt.de/

Abstract
This paper aims to motivate the hypothesis that practical interoperability can be seen as a function of whether and how stakeholder
communities duplicate or divide work in a given area or market. We focus on the area of language processing which traditionally
produces many diverse tools that are not immediately interoperable. However, there is also a strong desire to combine these tools into
processing pipelines and to apply these to a wide range of different corpora. The space opened between generic, inherently “empty”
interoperability frameworks that offer no NLP capabilities themselves and dedicated NLP tools gave rise to a new class of NLP-related
projects that focus specifically on interoperability: component collections. This new class of projects drives interoperability in a very
pragmatic way that could well be more successful than, e.g., past efforts towards standardised formats which ultimately saw little
adoption or support by software tools.

Keywords: interoperability, community

1. Introduction
The fragmentation of corpus formats, annotation schemes,
and NLP tools that we see in the area of natural language
processing (NLP) is an obstacle to the effective use of NLP
technology. However, it is not unusual to see such frag-
mentation. Given that building language resources and
NLP tools requires very specific expertise and that such ex-
pertise is sparsely distributed across the globe, it is even
quite natural. Another strong factor is that the research-
ers developing such tools and resources often need to focus
on their qualification work and find it easier to build from
scratch technology which they fully understand and which
does exactly what they need; they consider this preferable
to learning technologies which are potentially complex yet
more interoperable, which they may never perfectly under-
stand, and which may not exactly fit their needs. As a
consequence, we see many NLP-related tools being imple-
mented as stand-alone software for a single NLP task, or as
more or less comprehensive NLP stacks covering multiple
NLP tasks, each of these tools using their own formats and
annotation schemes.
Much work has been and is presently being undertaken to
address this fragmentation and to promote interoperabil-
ity – some more successfully than others:

• Standardization of formats and schemata: XCES (Ide
et al., 2000), LAF (Ide and Romary, 2004), GrAF (Ide
and Suderman, 2007), TEI (Consortium, 2007),
NIF (Hellmann et al., 2013), XMI (OMG, 2002), Fo-
lia (van Gompel and Reynaert, 2013), etc.

• Interoperability frameworks abstracting over indi-
vidual tools and focus on a common data exchange
model and workflow modelling process: GATE (Cun-
ningham et al., 2011), UIMA (Ferrucci and Lally,
2004), to some extent also NLTK (Bird et al., 2009)
or CoreNLP (Manning et al., 2014), etc.

• NLP platforms allowing to build workflows from a set
of integrated components: U-Compare (Kano et al.,
2011), WebLicht (Hinrichs et al., 2010), etc.

However, in most of these cases, the efforts are primarily
directed at the NLP community at large, trying to convince
stakeholders to adopt specific standards or formats them-
selves and to make their own tools compatible with these.
This creates an unhealthy competition between standards,
formats, and interoperability platforms for the attention and
commitment of the stakeholders and does not help in ad-
dressing the common goal of all these efforts – namely, im-
proving interoperability and reducing fragmentation.
In other areas – for example, in the space of Linux distri-
butions – we face a similar situation as in NLP, although at
a much larger scale: there are many thousands of tools and
libraries, each developed and maintained mostly by small
groups of people. However, the task of packaging up these
tools into a Linux distribution and giving such a distribu-
tion a uniform feeling (e.g. in terms of installation and con-
figuration) is handled by separate dedicated communities
focussing on this specific task.
A similar community structure and division of work may be
a suitable strategy also for the area of NLP. Specifically, the
task of wrapping NLP tools for interoperability frameworks
should fall neither to the developers of the NLP tools nor to
the developers of the interoperability frameworks; rather,
it should rather be handled by a dedicated community or
communities focussing exclusively on component collec-
tions. The data format and schema at the heart of the col-
lection is driven by the needs of the integrated components.
While it may be less generic than formats and schemata de-
veloped independently, a broad-supporting component col-
lection may give a much better incentive for users to stick
to such a format than a generic, independently developed
format without broad tool support could.

2. Differentiating the Stack
2.1. Interoperability Frameworks
GATE was one of the first frameworks to provide an ab-
straction over individual NLP tools via a common data ex-
change model and workflow process. It still offers one of
the most comprehensive NLP ecosystems, covering the full

24



stack from analysis tools to graphical user interfaces for all
kinds of NLP-related tasks. GATE is maintained mostly
by a group of developers at the University of Sheffield
who steadily improve and expand the GATE ecosystem.
However, few third parties provide GATE components, and
there are presently rather few community contributions to
the GATE core.
Another popular interoperability framework is Apache
UIMA. The focus of UIMA is more specific than that of
GATE, mainly targeting a common data model and the
building of scalable workflows. Apache UIMA provides
hardly any actual NLP components, nor does it define a
schema (i.e. type system) for components to communicate
with each other. This makes the framework unattractive to
many “end user” researchers who wish to build NLP sys-
tems, but it allows communities to form that fill the gap
between the plain interoperability framework, the tool pro-
viders, and the end users. UIMA was initially developed
at IBM and later transformed into a community project
the Apache Software Foundation. Still, many of the core
UIMA developers have day jobs at IBM. Contributions
from third parties are also rather few.

2.2. Component Collections
There are several examples of communities maintaining
component collections, although with slightly different
goals. This paper will focus here on collections based on
UIMA, but similar considerations likely apply to the GATE
ecosystem. For example, ClearTK (Ogren et al., 2009)
integrates a small set of NLP tools, but its main strength
is actually statistical NLP, i.e. building machine learning
approaches for NLP, training reusable models, etc. An-
other example is Apache cTAKES (Savova et al., 2010)
which provides UIMA-based components to process med-
ical records, integrating some third-party NLP tools and
also providing some original components and in particu-
lar domain-specific NLP models. U-Compare integrates a
wide range of third-party NLP tools with UIMA, with a
focus on comparing results generated from different NLP
pipeline setups. DKPro Core (Eckart de Castilho and
Gurevych, 2014) aims for a high-quality and easily usable
integration of a broad range of NLP tools with UIMA, and
does not have any other mission beyond that.
It should also be noticed that some tool providers have star-
ted integrating their tools with UIMA, for example Apache
OpenNLP1, but this integration is barely being maintained
and further developed. The OpenNLP components are in-
tended to be adaptable to different type systems and thus
be usable by a wider range of users. However, this does
appear to work out well for various reasons (e.g. the ex-
tra configuration overhead and the approach’s limitation to
specific type system designs). Instead, different component
collections wrap OpenNLP over and over again. This ap-
pears to be a typical example supporting the view that tool
providers should not bother with integrating their tools with
interoperability frameworks, but rather leave this task to the
component collections.
There are various criteria by which component collections
can be compared. The underlying interoperability frame-

1http://opennlp.apache.org

work is of course the first obvious criterion. In particu-
lar for UIMA component collections, the type system is
presently a very central element: every component collec-
tion uses its own type system with specific strengths and
awkwardnesses. But these are not the only differentiation
criteria. Other criteria include the variety and number of in-
tegrated tools, the flexibility in configuring these tools, the
ease of configuration, the easy of deployment, the quality of
the documentation, the licence, the activity of the developer
community, and the project governance model.
Variations in these criteria make some collections more at-
tractive to specific user communities than others. Some
of these factors and their effects are hard to measure (e.g.
ease of use, governance model). Also, if the developer
communities themselves conduct such measurement, they
would have to divert valuable resources from actually work-
ing on the project. As the communities driving these pro-
jects typically do so as a volunteer side-product of their ac-
tual work in research or industry, such effort is typically not
taken. As the aim of our present paper is to incite reflection
and generate discussion on the current state of interoperab-
ility, rather than to perform a detailed analysis of compon-
ent collections, we do not engage in such a detailed com-
parison at this point. Instead, the following section briefly
presents a subjective view on the strategies taken in DKPro
Core with respect to these criteria.

2.3. A Closer Look at a Component Collection
DKPro Core is a collection of components for the UIMA
framework. It integrates a broad range of third-party NLP
tools using the DKPro Core type system. The type system
mainly covers the basic layers of linguistic analysis includ-
ing tokenization, part-of-speech tagging, chunking, pars-
ing, named entities, coreference, semantic role labelling,
and more. DKPro Core is implemented in Java which
makes it portable across major system platforms.

Tools DKPro Core tries to integrate as many third-party
components for the different analysis levels as possible, but
this is naturally limited by developer resources. DKPro
Core 1.8.0 will consist of ⇡ 100 analytics components and
will support ⇡ 50 data formats. Well-engineered tools
with few transitive dependencies are easier to integrate than
complex tools. In particular, tools that address the higher
levels of linguistic analysis are often more difficult to in-
tegrate if these tools themselves already include multiple
pre-processing steps. For example, the BART coreference
resolution tool (Versley et al., 2008) includes many pre-
processing components, which makes it time-consuming
engineering task to isolate the actual coreference resolu-
tion aspect and to integrate that as a UIMA component
in DKPro Core. Simply including the whole BART sys-
tem, including all the third-party libraries it depends on, as
a single component could be done but may easily lead to
runtime problems (e.g. conflicting library versions).2

2It should be noted that UIMA allows components to be isol-
ated from each other to avoid these kinds of conflicts. However,
this requires components to be packaged as UIMA PEAR archives
which in our view makes them less easy to use programmatically –
thus DKPro Core does not presently offer PEARs. Another altern-

25



Configuration The configuration of components in
DKPro Core aims to provide maximum flexibility, expos-
ing as many parameters of the integrated tools as feasible,
while at the same time aiming for maximum ease of use. To
achieve the latter, two main approaches are taken: 1) para-
meters with the same or very similar meaning have the same
names across all components, irrespective of whether the
names are the same in the underlying tools; 2) the majority
of parameters use sensible default values and do not have
to be set explicitly by the user. This also entails that DKPro
Core defines default models to be used. The concrete mod-
els are selected taking the language of the documents being
processed into account. Furthermore, DKPro Core builds
on the uimaFIT library (Roeder et al., 2009) which greatly
facilitates the programmatic use of UIMA components as
compared to the plain UIMA API.
Deployment DKPro Core goes to great lengths to avoid
placing the burden of manually obtaining and installing
NLP tools and models on the user. To this end, it in-
tegrates with the software repository ecosystem around
Apache Maven, through which software and data packages
can be automatically discovered and downloaded, includ-
ing any transitive dependencies. Various NLP tools are
distributed via Maven directly by their authors. In other
cases, the DKPro Core team has packaged and uploaded
tools and libraries to the Maven ecosystem, typically in
coordination with the original authors, e.g. mstparser3 or
mate-tools.4 In the case of LanugageTool,5 the original au-
thors even decided to adopt Maven themselves for future
releases. As a general principle, only those DKPro Core
components which have all their dependencies available via
Maven are part of the official releases. Additionally, the
models needed for the respective tools are packaged and
distributed via Maven by the DKPro Core team.
Documentation The documentation of DKPro Core has
been greatly improved just recently through an largely auto-
matically generated reference documentation that aggreg-
ates snippets of documentation and metadata from mul-
tiple sources (JavaDoc, Maven, UIMA descriptors, model
metadata, etc.) and compiles these into five comprehens-
ive reference documents on the type system, components,
models, I/O formats, and tagset mappings. This approach
allows the project to deliver comprehensive documentation
without investing unreasonable amounts of time into main-
taining the same information redundantly in multiple docu-
mentation files.
Licensing Most of DKPro Core is licensed under the
Apache Software License 2.0 (ASL). However, it also in-
tegrates important NLP tools licensed under the GNU Gen-
eral Public License (GPL) and due to the reciprocal licens-
ing model, the corresponding DKPro Core components are
also licensed under the GPL. This could in principle lead
to the undesired effect that original DKPro Core code ini-
tially implemented in a GPLed module could not be moved

ative would be a web service–based integration, but this conflicts
with DKPro Core’s quest for portability.

3http://sourceforge.net/projects/mstparser/
4http://code.google.com/p/mate-tools/
5http://www.languagetool.org

to an ASL module as part of a refactoring – in particular, if
such code had been contributed to DKPro Core by a third
party. For this reason, the project has adopted a contrib-
utor licence agreement which ensures that all contributions
made to the project, irrespective of whether they are made
to an ASL or GPL component, are received under terms
compatible with the ASL licence. Thus, the project retains
full flexibility to refactor its original code even across its
internal GPL/ASL licence boundaries.
Developer Community DKPro Core started out as an in-
ternal project of the UKP Lab in 2007 and took a long way
from there to its present form as an open source project.
With the adoption of the contributor licence agreement,
DKPro Core is now able to grow into a truly community-
sustained and community-driven project. With the recent
closing down of Google Code, the project has moved to the
GitHub social coding platform, which has led to more con-
tributions and an increased level of interaction with users.
For further community growth involving contributors from
different backgrounds, research institutions, or companies,
it might prove beneficial in the future to adopt a more form-
alised project governance model.
The effort that could be invested in DKPro Core into grow-
ing the collection to support many tools, into optimising
deployment, and into making configuration easy was sup-
ported by the fact that the project focusses only on the col-
lection and was also able to take aggregate smaller and big-
ger improvements from many contributors with a particular
interest in interoperable components.

3. NLP Platforms Revisited
As mentioned previously, there have already been various
projects building NLP platforms. However, these typically
had a strong focus only enabling integration while leaving
the actual integration of tools to the tool providers. This
appears to be changing now as some upcoming NLP plat-
forms seem to collaborate more closely with the providers
of component collections for the integration of tools. Open-
MinTeD and LAPPS are two examples of platform projects
with this new strategy. They aim at integrating different
component collections, even ones based on different under-
lying interoperability frameworks like GATE and UIMA,
and make them interoperable. Instead of insisting on a
single format and schema, they leave some room to support
a select set of formats (e.g. UIMA XMI, GATE XML, and
JSON-LD) and schemata within their platforms and already
offer or plan to offer conversions between these. In this
way, the platforms will be able to profit from existing, com-
prehensive component collections in multiple NLP ecosys-
tems and at the same time strengthen these, direct more at-
tention at existing collections, and help growing their com-
munities.

4. Conclusion
Dedicated communities that focus specifically on building
component collections are able to pay more attention at
driving and optimising interoperability, ease of use, and
ease of deployment of these components. A well-designed
and comprehensive component collection should help to re-
duce the format and schema fragmentation, as users should

26



be more likely to build on the type system offered by the
collection instead of inventing a new one.
Other communities building on such collections can then
focus on their actual goals, such as visually building NLP
workflows, comparing results of different NLP pipeline
setups, building flexible machine learning frameworks
making use of NLP features, scaling out and distributed
processing, building component registries, etc.
Likewise, NLP tool providers can continue to focus on their
original interest of building high-quality tools and can trust-
fully leave the integration with interoperability frameworks
to the component collection maintainers.
So to summarise, the decoupling of component collections
and the associated interoperability considerations from un-
derlying interoperability frameworks and from tools related
to workflows, editing, or evaluation should be a beneficial
step towards a more healthy division of labour between the
communities, with less competition for the tool providers’
attention and a stronger ability to reduce the fragmentation
in terms of formats and schemata in our field.

5. Acknowledgements
This work has received funding from the European Union’s
Horizon 2020 research and innovation programme (H2020-
EINFRA-2014-2) under grant agreement No. 654021. It
reflects only the author’s views and the EU is not liable
for any use that may be made of the information contained
therein. It was further supported by the German Federal
Ministry of Education and Research (BMBF) under the pro-
motional reference 01UG1416B (CEDIFOR). Thanks to
Angus Roberts and Tristan Miller for their valuable com-
ments.

6. Bibliographical References
Bird, S., Klein, E., and Loper, E. (2009). Natural Lan-

guage Processing with Python. O’Reilly Media.
Consortium, T. (2007). TEI P5: Guidelines for Elec-

tronic Text Encoding and Interchange. Guidelines,
TEI Consortium, November. URL: http://www.tei-c.org/
Guidelines/P5/.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts,
A., Damljanovic, D., Heitz, T., Greenwood, M. A., Sag-
gion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text
Processing with GATE (Version 6).

Eckart de Castilho, R. and Gurevych, I. (2014). A broad-
coverage collection of portable NLP components for
building shareable analysis pipelines. In Proceedings
of the Workshop on Open Infrastructures and Analysis
Frameworks for HLT, pages 1–11, Dublin, Ireland, Au-
gust. ACL and Dublin City University.

Ferrucci, D. and Lally, A. (2004). UIMA: An architectural
approach to unstructured information processing in the
corporate research environment. Natural Language En-
gineering, 10(3–4):327–348, September.

Hellmann, S., Lehmann, J., Auer, S., and Brümmer, M.
(2013). Integrating NLP using linked data. In The Se-
mantic Web–ISWC 2013, pages 98–113. Springer.

Hinrichs, M., Zastrow, T., and Hinrichs, E. (2010). Web-
Licht: Web-based LRT services in a distributed eSci-
ence infrastructure. In Nicoletta Calzolari, et al., editors,
Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), pages
489–493, Valletta, Malta, May. European Language Re-
sources Association (ELRA).

Ide, N. and Romary, L. (2004). International standard for a
linguistic annotation framework. Nat. Lang. Eng., 10(3-
4):211–225, September.

Ide, N. and Suderman, K. (2007). GrAF: A graph-based
format for linguistic annotations. In Proceedings of the
Linguistic Annotation Workshop, pages 1–8, Prague,
Czech Republic, June. ACL.

Ide, N., Bonhomme, P., and Romary, L. (2000). XCES:
An XML-based encoding standard for linguistic cor-
pora. In Nicoletta Calzolari, et al., editors, Proceed-
ings of the 2nd International Conference on Language
Resources and Evaluation (LREC’00), pages 825–830,
Athens, Greece, May. European Language Resources
Association (ELRA).

Kano, Y., Miwa, M., Cohen, K. B., Hunter, L. E., Anani-
adou, S., and Tsujii, J. (2011). U-Compare: A modu-
lar NLP workflow construction and evaluation system.
IBM Journal of Research and Development, 55(3):11:1–
11:10, May.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Beth-
ard, S. J., and McClosky, D. (2014). The Stanford
CoreNLP natural language processing toolkit. In As-
sociation for Computational Linguistics (ACL) System
Demonstrations, pages 55–60.

Ogren, P. V., Wetzler, P. G., and Bethard, S. J. (2009).
ClearTK: A framework for statistical natural language
processing. In Christian Chiarcos, et al., editors, Pro-
ceedings of the Biennial GSCL Conference 2009, 2nd
UIMA@GSCL Workshop, pages 241–248, Potsdam,
Germany, September. Gunter Narr Verlag.

OMG. (2002). OMG XML metadata interchange (XMI)
specification. Technical report, Object Management
Group, Inc., January.

Roeder, C., Ogren, P. V., Baumgartner Jr., W. A., and
Hunter, L. (2009). Simplifying UIMA component de-
velopment and testing with Java annotations and depend-
ency injection. In Christian Chiarcos, et al., editors, Pro-
ceedings of the Biennial GSCL Conference 2009, 2nd
UIMA@GSCL Workshop, pages 257–260. Gunter Narr
Verlag.

Savova, G. K., Masanz, J. J., Ogren, P. V., Zheng, J., Sohn,
S., Kipper-Schuler, K. C., and Chute, C. G. (2010).
Mayo clinical text analysis and knowledge extraction
system (cTAKES): Architecture, component evaluation
and applications. Journal of the American Medical In-
formatics Association, 17(5):507–513.

van Gompel, M. and Reynaert, M. (2013). FoLiA: A prac-
tical XML format for linguistic annotation – A descript-
ive and comparative study. Computational Linguistics in
the Netherlands Journal, 3:63–81, December.

Versley, Y., Ponzetto, S. P., Poesio, M., Eidelman, V.,
Jern, A., Smith, J., Yang, X., and Moschitti, A. (2008).

27



BART: A modular toolkit for coreference resolution. In
Proceedings of the ACL-08: HLT Demo Session, pages
9–12, Columbus, Ohio, June. ACL.

28


